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ABSTRACT 

Chile is the world's leading copper producer, with more than 5.6 million tons produced in 2020. Most of 
the produced ore comes from open pit mines, whose extraction process consists of different subprocesses, 
with ore hauling incurring the highest operational cost. Tools to improve this subprocess are of paramount 
importance. Most tools use approaches that rely on optimization based on analytical methods. However, 
these fail to capture human behavior or to consider fine-grained details. To this end, we present a DEVS 
(Discrete-Event System Specification) simulation model. The formal definition of DEVS helps with the 
design and experimentation. DEVS modular interfaces allow users to extend the model easily to consider 
more entities, mine layouts, and dispatching policies. Simulations of the model delivered precise results 
compared to the literature, providing a valuable tool for decision-making in the mining industry. 

1 INTRODUCTION 

The mining industry is present in 13 out of the 15 regions of Chile, and it is the country's primary revenue 
source. In addition, Chile is the top exporter of copper and is among the primary producers of iodine and 
lithium (USGS 2021), among other 25 minerals and their derivatives (SONAMI 2021). Their most common 
method of operation is open-pit mining (Cleveland and Morris 2015). 

Open-pit mining comprises several phases for delivering minerals, the productive phase being the most 
critical. This operation comprises four primary processes: i) Ore extraction, ii) Ore processing, iii) Melting, 
and iv) Refining. Moreover, each of these is composed of different subprocesses. For example, ore 
extraction comprises perforation, perforation triggering, blasting, and mineral handling. Of these, mineral 
loading and hauling is the most expensive subprocess, with costs ranging from 50% to 60% of the overall 
operational costs in large open pit mines (Curry et al. 2014; Alarie and Gamache 2010; Bozorgebrahimi et 
al. 2003; da Cunha Rodovalho et al. 2016). 

Several kinds of machinery are involved in the truck loading and hauling subprocess, among which the 
most important are trucks (used for mineral transportation) and shovels (that load the extracted material 
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into the trucks). Other important entities involved in this subprocess are the stockpiles for temporal mineral 
storage, and waste dumps where the waste or inert mineral is dumped. Both are the destinations of the 
material transported by trucks (Burt and Caccetta 2014). The dispatch system orchestrates this subprocess 
(Soumis et al. 1989; Alarie and Gamache 2010), assigning trucks to shovels and stockpiles - in the most 
efficient manner - in each cycle. Thus, this subprocess's main objective is to transport the required amounts 
of material (from the shovels to stockpiles or waste dumps) to achieve the production goals of management 
officers using as few resources as possible (that is, trucks and shovels). 

Since loading and hauling are the most expensive subprocesses, the main research approaches are 
proposed as optimization problems, focusing on reaching the maximum of ore processing by using the 
minimum resources through integer programming, discrete-event simulation (DES), or a combination of 
both (Upadhyay and Askari-Nasab 2018). In addition, some of them consider stochastic modeling for some 
variables, such as failure and repair rates (Mena et al. 2013). Nevertheless, with integer programming 
approaches, each factor of the model maps to a variable and, therefore, to a new constraint. Thus, detailed 
models are more complex to solve. On the other hand, many DES approaches are informal or based on 
programming languages, therefore, guaranteeing the correctness of the simulation model is complex and 
expensive, requiring an extensive testing process. Nevertheless, a formal specification approach can help 
improve simulation's security and development costs (Zeigler et al. 2000; Wainer 2017). 

In this paper, we show that the DEVS (Discrete-Event System Specification) formalism (Zeigler et al. 
2000) can also be a valuable tool for performing discrete-event simulation of the material handling 
subprocess in open-pit mines. Here we have developed the first model to study this kind of system using 
DEVS. The model is fully parametrizable and is flexible enough to make it easy to add new types of 
machinery, mine layouts, and truck-shovel assignment strategies. Thus, our contribution is two-fold: it is a 
powerful simulation model that serves as a potent testing tool for dispatching personnel to assess the impact 
of new changes on the mining facility, and - even when it is not our primary objective - it can be added to 
(and combined with) the stack of tools used by researchers for optimization studies. 

The remainder of this article is as follows: Section 2 reviews related works regarding optimizing the 
material handling subprocess in open pit mines and the DEVS formalism. Section 3 describes the proposed 
DEVS model. In section 4, we validate our model and define a simple brute-force method for estimating 
the amount of needed equipment given a hauling goal. Finally, in section 5, we present the conclusions of 
our work and discuss the possibilities of future work. 

2 RELATED WORK 

2.1 Open-Pit Mines 

In an open pit mine facility, the extraction process is carried out through four fundamental stages: drilling, 
blasting, loading, and transportation (also known as material handling). These last two operations are a 
critical logistics process, as they account for 50% to 60% of the total operating cost (Upadhyay and Askari-
Nasab 2018; Alarie and Gamache 2010). 

Each cycle of the material handling subprocess (see Figure 1) consists of a truck assigned to a shovel. 
Upon arrival, the shovel loads it with ore or disposal soil. Then, the truck hauls the material to a stockpile 
(for ore storage) or a waste dump (for disposal). Queues of trucks might form before shovels and stockpiles 
or waste dumps. If no trucks are available, shovels become idle and wait. The dispatcher is responsible for 
assigning truck-to-shovel, truck-to-stockpile, or truck-to-waste dumps. Therefore, an efficient dispatcher 
policy is paramount for achieving production goals and reducing operational costs. Besides, pieces of 
equipment involved in this process are the most expensive and - in open pit mines – can be up to 70 trucks 
and 20 shovels (Chaowasakoo et al. 2017). The previous means that loading and transportation are the 
operations that influence costs the most (mostly due to its operational costs). 

Furthermore, a truck can transport approximately 300 tons of material with copper ore - roughly valued 
at 30,000 US dollars - (National Productivity Commission 2017). Considering that a truck's hauling distance 
is about 10-25 minutes with shifts of 12 hours (Alarie and Gamache 2010), optimization to the process (no 
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matter how small) represents significant savings. The main objective is to accomplish material handling 
goals while keeping shovel and truck utilization close to 100% without overestimating the needed 
machinery. If the truck fleet is too large compared to the number of shovels, queues will appear, reducing 
their utilization levels and increasing operational costs. 

 
Figure 1: Loading and hauling cycle. 

2.2 Open-Pit Mine Optimization, Modeling and Simulation 

Most modeling efforts to solve this problem use optimization techniques for the open-pit material handling 
subprocess, usually performed through analytical methods (operations research) or discrete-event 
simulation (DES). 

Some operations research studies focus on truck assignment and allocation, such as (Ta et al. 2013), 
whose authors present a model that minimizes the number of trucks for a given number of shovels. The 
model contemplates throughput and ore concentration constraints and also considers the probabilities of 
idle shovels for a more accurate truck allocation. The work of (Zhang and Xia 2015) addresses the 
dispatching problem by formulating an integer programming model to optimizing load-unload truck cycles 
while meeting production goals. More recent studies present mixed-integer non-linear programming for 
optimal fleet size subject to fleet efficiency (Mohtasham, et al. 2021). Whereas other efforts focus on 
reducing costs, such as the work of (Bajany et al. 2017), which presents a truck and shovel fuel consumption 
optimization method while meeting material handling demands, claiming to have a noticeable costs 
reduction. The research presented in (Upadhyay and Askari-Nasab 2016) proposed a mixed-integer linear 
goal programming model for achieving overall trucks and shovels utilization above 90%. 

On the other hand, when compared to linear programming DES is a relatively new approach to material 
handling optimization. In (Fioroni, et al. 2008) the authors used a combination of simulation with a mixed 
integer linear programming-based model by planning optimal production to reduce costs. The authors of 
(Meng, et al. 2013) modeled the problem using Petri Nets. Another method was proposed by (Tan and 
Takakuwa 2016), they used an Arena simulation model combined with a simple algorithm (implemented 
in Visual Basic) to optimize the dispatching system to achieve stable production of a specific grade. Other 
simulation approaches are based in multiagent simulation, particularly focusing on an optimal assignment 
of trucks to shovels at each hauling cycle (Icarte et al. 2020; Icarte et al. 2021). 

Finally, mixed approaches combine optimization methods with DES. Authors in (Mena et al. 2013) 
implemented a simulator that allocates trucks in routes according to their operating performance. In 
(Upadhyay and Askari-Nasab 2018) authors developed a DES framework that interacts with an operational 
optimization tool to develop an uncertainty-based short-term schedule for achieving long-term operational 
objectives. 

DES advantages can be summarized as i) To allow decision-making personnel to test new assignment 
strategies without the risk of interfering with the actual process, ii) To test different layouts that could be 
too expensive or even impossible to test in real-life settings, iii) Simulate highly detailed and fine-grain 
models without incurring higher computational costs, in contrast to analytical models, where entities are 
homogenous, and each new detail becomes a new model constraint (Marin, et al. 2019; Gil-Costa et al. 
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2020), and iv) Optimizing through simulation allows to consider more realistic details, such as 
heterogeneous fleet machinery and to consider the behavior of the operators. 

A formal discrete-event simulation model (being implemented as DES) delivers all the DES advantages 
mentioned above, plus it improves model verification. Also, formal specification mechanisms can help 
improve simulation's security and development costs (Zeigler et al. 2000; Wainer 2017). We chose the 
DEVS formalism because it provides several advantages for the modeling and simulation of similar 
systems: it is a hierarchical and modular technique that allows models to be easily extended through the 
description of models in multiple levels, provides the means for translating formal specifications into 
executable models (it is not dependent on the programming language), its logical and timing correctness 
relies on sound mathematical theory, DEVS can represent every system, and it is widely known in the 
simulation community (Zeigler et al. 2000; Fonseca 2009; Wainer 2017).  

2.3 DEVS Formalism  

The Discrete Event System Specification (DEVS) is a formalism for modeling and analyzing discrete event 
systems (Zeigler et al. 2000). DEVS provides the means for describing discrete-event systems by using two 
different kinds of elements to model a real system: atomic and coupled models. Atomic models are the most 
elemental and basic entities to represent systems and define the behavior of the system elements, while 
coupled models define the systems' structure. Furthermore, atomic models can react to internal and external 
events, which allows defining a way of specifying systems whose states change upon the reception of an 
input event or the expiration of a time delay. Coupled models are composed of two or more atomic or 
coupled models, and - thanks to the closure under coupling property - can be regarded as another DEVS 
model. Coupled models can be integrated to form a model hierarchy, allowing model reuse. 

Coupled models may have their own input and output events. Upon the arrival of an external event, a 
coupled model has to redirect the input to one or more of its components. In addition, when a component 
produces an output, it must be mapped as another component's input or as an output of the coupled model 
itself. Thus, coupled models represent the structure of a system, whereas atomic models represent its 
behavior. Since DEVS is widely known in the simulation community, and due to lack of space, a formal 
definition of DEVS atomic and couple models is not supplied here, however, it can be found in (Chow and 
Zeigler 1994; Zeigler et al.2000; Wainer 2017). 

3 DEVS MATERIAL HANDLING SUBPROCESS MODEL 

3.1 DEVS Model Assumptions and Logic 

This section presents the material handling subprocess (described in Figure 1) modelled using the DEVS 
formalism. A graphical representation of the DEVS model definition corresponding to the material handling 
subprocess is depicted in Figure 2. 

It is worth mentioning that the proposed model is not spatially explicit, so aspects related to locations 
and distances are represented differently. For example, the position of each shovel and stockpile in the mine 
layout and the routes among them are represented as the time to travel between them (instead of location 
and distances). It implies that the way trucks travel is only represented as a delay in the time it takes them 
to travel from one point to another; that is, it is not possible to (at least directly) represent the location of a 
truck in a given route other than when it begins or finish its travel. As such, each factor of the route that 
affects the displacement of trucks is represented as shorter/longer delays. Thus, route congestion cannot be 
represented directly but as a longer travel time. Another aspect that is represented differently is when queues 
form at a given shovel or stockpile. Such queues cannot be represented in the surrounding space; instead, 
queues are defined directly on the shovels or stockpiles. Despite not being a spatially explicit model, it 
allows fast simulations while not losing precision, as shown in section 4.2. Another consequence of not 
being a spatially explicit model is that each atomic model representing a truck must be connected (through 
input/output ports) to the shovels and stockpiles it interacts with, as seen in Figure 2. 
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The model’s rationale is as follows: To represent the arrival of a given 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 to a 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑗𝑗; the former 
sends its 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖 (a positive integer 𝑖𝑖 as its output value) from its 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌i output port to the input port 
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 of 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑗𝑗. Likewise, to simulate the loading process of a truck, a non-negative integer output 
value from 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑗𝑗 (through its 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖 𝑖𝑖 output port) is sent back to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖, representing the number 
of tons of 𝑜𝑜𝑡𝑡𝑜𝑜 loaded into it. On the other hand, to simulate the unloading of the hauled ore on a given 
stockpile, a truck sends an output value (through its 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖 𝑡𝑡 output port) to the input port 𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖 of 
𝑠𝑠𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 𝑡𝑡. Should a shovel be busy upon a truck's arrival, the truck id will be added to an FCFS queue 
and - eventually – will be serviced. The same logic applies to a truck arriving at an already active stockpile; 
the only difference is that a stockpile has a serving capacity and can serve several trucks simultaneously. 
 The time spent by a truck while transiting each route corresponds to a time value used by the 
corresponding truck as a delay. Finally, it can be observed the presence of an atomic model called Collector, 
whose input port 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡 is connected to all atomic models' output port 𝐷𝐷𝐷𝐷𝑁𝑁𝐷𝐷. Its purpose is only to 
collect values from every shovel, truck, and stockpile atomic model for computing performance metrics 
about the model. 

 
Figure 2: Generalized material handling DEVS model. 

 The dispatcher logic corresponds to a class method since it only handles the truck-shovel or truck-
stockpile assignments logic policy. Its logic is based only on the status (idle or busy) of each shovel and 
stockpile; its assignments do not alter simulation time directly. As such, any new assignment strategy the 
user may want to experiment with must be implemented simply by overloading the corresponding class 
method. 

3.2 DEVS Model Definition 

 As observed, the model is flexible enough to allow users to consider arbitrary amounts of shovels, 
trucks, and stockpiles. Plus, since each entity is parametrizable, it allows heterogenous machinery fleets. 

Using the DEVS formalism, the material handling subprocess can be modelled as a coupled model like: 
𝐻𝐻𝐷𝐷𝑇𝑇𝐻𝐻𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑇𝑇𝑁𝑁𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 = < 𝑋𝑋,𝑌𝑌,𝐷𝐷, {𝑀𝑀𝐷𝐷}, {𝑁𝑁}, {𝑍𝑍}, 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 > 

Where: 
𝑋𝑋 = ∅;  𝑌𝑌 = ∅;  
𝐷𝐷 = �𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗, 𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑘𝑘 ,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡� ∀ 𝑖𝑖 ∈ [1,𝑖𝑖]  where 𝑖𝑖  is the number of shovels, ∀ 𝑗𝑗 ∈
[1,𝑚𝑚] where 𝑚𝑚 is the number of trucks, ∀ 𝑡𝑡 ∈ [1,𝑠𝑠] where 𝑠𝑠 is the amount of stockpiles. 
𝑀𝑀𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 1..𝑛𝑛 = 𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜; 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 1..𝑚𝑚 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 𝑀𝑀𝑠𝑠𝑡𝑡𝑜𝑜𝑡𝑡𝑘𝑘𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 1..𝑠𝑠 = 𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜; 
𝑁𝑁 = ∅; 
𝑍𝑍 = {�(𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝐷𝐷𝐷𝐷𝑁𝑁𝐷𝐷), (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡, 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡)�;  ��𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗,𝐷𝐷𝐷𝐷𝑁𝑁𝐷𝐷�, (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡, 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡)� ; 
           (�𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠,𝐷𝐷𝐷𝐷𝑁𝑁𝐷𝐷�, (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡, 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑡𝑡)); �(𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖�, (𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖)); 
           ��𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗, 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑠𝑠�, �𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠, 𝐻𝐻𝑁𝑁𝐷𝐷𝐷𝐷�� ; �𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 , 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑗𝑗�, �𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗, 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖�}; 
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𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = {𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗,𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡}; 

 The above coupled model is composed only of atomic models (Shovel, Truck, Stockpile and Collector). 
Therefore, such atomic models can be formally defined as: 

𝐸𝐸𝐻𝐻𝑁𝑁𝑆𝑆𝐸𝐸𝐻𝐻 = < 𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠, 𝐸𝐸𝑠𝑠, 𝛿𝛿𝑜𝑜𝑒𝑒𝑡𝑡𝑠𝑠 ,𝛿𝛿𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠 ,𝜆𝜆, 𝑡𝑡𝑙𝑙 > 
Where: 

𝑋𝑋𝑠𝑠 = {(𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑁𝑁𝑡𝑡)} where 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the input port and 𝑁𝑁𝑡𝑡 represents the ID value of the truck requesting 
service; 
𝐸𝐸𝑠𝑠 = {𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 ∈ {𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙,𝑤𝑤𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙 },𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜, 𝑡𝑡𝑖𝑖𝑚𝑚𝑜𝑜𝐻𝐻𝑜𝑜𝑡𝑡𝑡𝑡 ∈ ℝ0+,𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜 ∈ {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑡𝑡}∗}; 
where 𝑁𝑁𝑡𝑡 ∈ [1,𝑖𝑖𝑡𝑡𝑚𝑚𝑛𝑛𝑜𝑜𝑡𝑡𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠]. 
𝑌𝑌𝑠𝑠 = {(𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖 , 𝐻𝐻)} with 𝑖𝑖 ∈ [1,𝑖𝑖𝑡𝑡𝑚𝑚𝑛𝑛𝑜𝑜𝑡𝑡𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠] corresponds to the output port connecting to the 
truck whose ID equals 𝑖𝑖, and 𝐻𝐻 ∈ ℝ + represents the amount of ore (in tons) loaded into the truck; 

𝛿𝛿𝑜𝑜𝑒𝑒𝑡𝑡𝑠𝑠  (𝑠𝑠, 𝑜𝑜, 𝑥𝑥){ 
      𝑙𝑙𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑠𝑠. 𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜)   //A truck’s ID was received and added to the shovel’s queue. 
      𝑖𝑖𝑡𝑡(𝑠𝑠𝑖𝑖𝑠𝑠𝑜𝑜𝑁𝑁𝑡𝑡(𝑠𝑠. 𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜) == 1){ //The queue was empty, no other trucks were being loaded. 
         𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙;    //The shovel must start loading. 
         𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;    //The shovel starts loading the truck. 
      }𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜{       //There is a truck being loaded, the arriving truck must wait. 
         𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑡𝑡𝑖𝑖𝑚𝑚𝑜𝑜𝐻𝐻𝑜𝑜𝑡𝑡𝑡𝑡;  //Use time left before loading next (queued) truck. 
      } 
} 

𝜆𝜆 (𝑠𝑠){                    //When the shovel stops loading the truck, it sends the  
   𝑠𝑠𝑜𝑜𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡�𝐻𝐻, 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖, 𝑡𝑡𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡(𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜)�;  //Outputs the amount of ore loaded into the truck (𝐻𝐻) to the  
}                    //corresponding truck atomic model through the associated  
              //𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖 output port, with 𝑖𝑖 having the value of the truck ID. 

𝛿𝛿𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠(𝑠𝑠){ 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑖𝑖𝑠𝑠𝑜𝑜𝑁𝑁𝑡𝑡(𝑠𝑠. 𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜) > 1){  //If the queue was empty, it means that there are no other trucks being 
      𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙;    // loaded or waiting to be loaded. Therefore, shovel becomes active. 
     𝑞𝑞𝑡𝑡𝑜𝑜𝑡𝑡𝑜𝑜.𝑠𝑠𝑜𝑜𝑠𝑠();     // Removes the truck from the queue. 
     𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;       //The shovel starts loading the truck. 
   }𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜{ 
      𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑤𝑤𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙;    // loaded or waiting to be loaded. Therefore, shovel becomes active. 
      𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑙𝑙𝑡𝑡𝑜𝑜();     //No more trucks are in line to be loaded, wait until another arrives. 
   } 
} 

 On the other hand, a truck atomic model is formally defined as: 
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = < 𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡 , 𝐸𝐸𝑡𝑡,𝛿𝛿𝑜𝑜𝑒𝑒𝑡𝑡𝑡𝑡 ,𝛿𝛿𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡 ,𝜆𝜆, 𝑡𝑡𝑙𝑙 > 

𝑋𝑋𝑡𝑡 = {(𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖, 𝐻𝐻𝑡𝑡)} where 𝑖𝑖𝑖𝑖_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖 is the input port and 𝐻𝐻𝑡𝑡 represents the amount of ore (in tons) received 
from the shovel (loaded onto the truck); 
𝐸𝐸𝑡𝑡 = {𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 ∈ {𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐻𝐻𝑜𝑜𝑙𝑙𝑖𝑖𝑜𝑜𝑖𝑖,𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙,ℎ𝑙𝑙𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙, 𝑡𝑡𝑡𝑡𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸𝑚𝑚𝑠𝑠𝑡𝑡𝑡𝑡, 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}, 
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          𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑙𝑙𝑡𝑡𝑙𝑙𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜, 𝑡𝑡𝑖𝑖𝑚𝑚𝑜𝑜𝐻𝐻𝑜𝑜𝑡𝑡𝑡𝑡 ∈ ℝ0+,𝐻𝐻 ∈ ℝ+}; 
𝑌𝑌𝑡𝑡 = {(𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖 , 𝐻𝐻𝑡𝑡)} with 𝑖𝑖 ∈ [1,𝑖𝑖𝑡𝑡𝑚𝑚𝑛𝑛𝑜𝑜𝑡𝑡𝑁𝑁𝑡𝑡𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠] corresponds to the output port connecting to 
the stockpile whose ID equals 𝑖𝑖, and 𝐻𝐻 ∈ ℝ + represents the amount of ore (in tons) unloaded by the truck 
into the stockpile; 

𝛿𝛿𝑜𝑜𝑒𝑒𝑡𝑡𝑡𝑡  (𝑠𝑠, 𝑜𝑜, 𝑥𝑥){ 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐻𝐻𝑜𝑜𝑙𝑙𝑖𝑖𝑜𝑜𝑖𝑖){     //The truck is being loaded by a shovel. 
      𝐻𝐻 = 𝑥𝑥. 𝑜𝑜𝑙𝑙𝑜𝑜𝑡𝑡𝑜𝑜;         //Stores the received value from the shovel (amount of ore). 
      𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑡𝑡ℎ.𝑙𝑙𝑜𝑜𝑡𝑡𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑁𝑁𝐷𝐷(); //Asks the dispatch the stockpile to dump the ore. 
      𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = ℎ𝑙𝑙𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙;       //New state is hauling the ore. 
      𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = ℎ𝑙𝑙𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;          //The time needed to transport the ore to stockpile i. 
   } 
} 

𝜆𝜆 (𝑠𝑠){  
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == ℎ𝑙𝑙𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙 𝑁𝑁𝑇𝑇 𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑡𝑡𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸𝑚𝑚𝑠𝑠𝑡𝑡𝑡𝑡){  }      //do not output; 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙){ 
      𝑠𝑠𝑜𝑜𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡(𝑁𝑁𝐷𝐷, 𝐻𝐻, 𝑜𝑜𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖);       //Outputs the truck ID and hauled ore to the stockpile i. 
   } 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜){  
      𝑠𝑠𝑜𝑜𝑖𝑖𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡(𝑁𝑁𝐷𝐷,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌𝑖𝑖);              //Outputs the truck Id to the shovel to request to be loaded. 
   } 
} 

𝛿𝛿𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜){ 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == ℎ𝑙𝑙𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙){      
     𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙;     //After hauling the state changes to unloading the ore. 
      𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;          //The time needed to unload 
   }  
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙){  
     𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑡𝑡𝑡𝑡𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸𝑚𝑚𝑠𝑠𝑡𝑡𝑡𝑡;   //After unloading the state changes to travelling empty. 
      𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑡𝑡𝑡𝑡𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;          //The time needed to arrive at a shovel. 
   }  
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑡𝑡𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐸𝐸𝑚𝑚𝑠𝑠𝑡𝑡𝑡𝑡){  
     𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜;     //After travelling, the truck asks the shovel to be loaded. 
      𝑡𝑡𝑙𝑙(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜) = 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝑁𝑁𝑖𝑖𝑚𝑚𝑜𝑜;                 //The time needed to indicate that the truck is ready to be loaded. 
   } 
   𝑖𝑖𝑡𝑡(𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 == 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜){  
     𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑜𝑜 = 𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑙𝑙𝐻𝐻𝑜𝑜𝑙𝑙𝑖𝑖𝑜𝑜𝑖𝑖;   //After being ready to be loaded, the truck changes to being loaded. 
     𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑙𝑙𝑡𝑡𝑜𝑜();      //Waits for the shovel to finish loading the truck (might be queued). 
   } 
}  
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The formal definition of the stockpile and collector models is not included for lack of space. However, 
the formal definition of the stockpile is similar to the definition of the shovel. They only differ because the 
stockpile outputs each unloaded amount of ore to the collector. On the other hand, the collector's definition 
is trivial as it only receives values used for computing performance statistics on the simulation model. 

3.3 Model Implementation 

The model presented in Section 3.1 was implemented using PyPDEVS (Van Tendeloo and Vangheluwe 
2014), a Python-based DEVS/PDEVS simulation framework. The implementation corresponds to the 
definition of four atomic models (truck, shovel, stockpile, and collector). Also, an additional Python class 
representing the dispatcher is included. However, since it only computes the next target of a truck (shovel 
or stockpile) and does not alter the simulation time, it was not represented as an atomic DEVS model. 
 The number and parameters of trucks, shovels, stockpiles, and shovel-to-stockpile routes are not hard 
coded, nor are the input-output port connections among entities. Instead, they are dynamically created from 
the parameters in a JSON configuration file. 

The interaction among atomic models works as follows. The loading of a truck by a shovel starts when 
a truck atomic model is in state 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. First, the truck obtains a message from the class dispatcher 
with the ID of the target shovel. Then, the truck sends its ID to the shovel through the corresponding output 
port using its output function in state 𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑡𝑡𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Next, the shovel atomic model activates its external 
function and queues the received ID, changing its state to loading. If there are no other trucks' IDs queued, 
it activates its internal transition function, and then it advances time (representing the loading of a truck).  

Finally, the shovel sends the number of tons loaded into the truck using its output function through the 
corresponding output port. The interaction between a truck and a stockpile works similarly.  

The definition of a simulation scenario if made on a simple JSON file like the following: 
{ 
"trucks" : 6, "shovels" : 2, "stock_piles" : 3, "simTime":3600, 
"shovelToStock" : [ [0,1], [1,2] ] 
} 
The simulation consists of 6 trucks, 2 shovels, 3 stockpiles and will last 3600 seconds. Each subarray 

from the field shovelToStock contains the ID of the connected stockpiles, that is, it defines the internal 
coupling among the ports of trucks-shovels and trucks-stockpiles. Thus, shovel ID 0 has routes to stockpiles 
with ID 0 and 1, and shovel ID 1 is connected with stockpiles 1 and 2.  

4 MINERAL HANDLING: CASE STUDIES 

4.1 Experiment Parameters 

Most open-pit mining companies do not openly expose the details of their daily chores, as it is a paramount 
strategic asset. However, a small set allows only a few researchers to analyze their data after signing NDAs 
(non-disclosure agreements), forbidding them from revealing the name of the corporation or from 
publishing raw data about their daily activities but just aggregated data. During our literature review, we 
found the work of (González-Gazmuri 2016) that published a few crucial parameters and measures obtained 
from an important Chilean copper company (shown in Table 1) along with actual utilization levels of 
shovels and trucks. The validation of our model is based on this data. 

Table 1: Simulation parameters for validation applied to the proposed DEVS simulation model, values 
obtained from (González-Gazmuri 2016). 

Machinery Function State Parameter Measure Unit 

Shovels Time advance Loading ln(𝑋𝑋) ∼ 𝒩𝒩(4.41, 2.542) Minutes 
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Output  Loading ln(𝑋𝑋) ∼ 𝒩𝒩(331, 16.062) Tons. 

Trucks 

Time advance Unloading ln(𝑋𝑋) ∼ 𝒩𝒩(1.84, 1.382) Minutes 

Time advance Hauling ln(𝑋𝑋) ∼ 𝒩𝒩(34.1, 21.92) Minutes 

Time advance Travelling empty ln(𝑋𝑋) ∼ 𝒩𝒩(26.8, 19.02) Minutes 

 
 In the following subsections, first, we validate our model to ensure it predicts valid and meaningful 
results. Then we simulate scenarios to show this tool's power to determine the fleet size needed for 
achieving a given material handling objective during a 12-hour shift. 

4.2 Validation 

For the present validation, we focus on shovel and trucks utilization levels, simulating scenarios using a 
single shovel, three stockpiles, and 5 to 14 trucks, with the parameters presented in Table 1. As no details 
about the dispatch were provided, it was assumed a round-robin assignment of truck-shovel and truck-
stockpile. 

Table 2 shows a comparison among actual truck utilization levels (González-Gazmuri 2016) and results 
reported by our DEVS simulation model. The difference shows a mean square error of 2.96, indicating a 
remarkable accuracy of the proposed model. In fact, the difference is explained due to the lack of details of 
the real observations as they do not report unplanned fails nor pauses made by the machinery operators. 

Table 2: Comparison of real and simulated truck utilization levels. 

Truck Qty 5 6 7 8 9 10 11 12 13 14 

Real Utilization (%) 98.1 95.5 93.9 90.3 85.5 80.4 74.8 69.5 64.7 60.4 

Simulated 

Utilization (%) 
95.5 93.9 92.37 89.7 86.2 83.2 78.4 74.1 68.8 63.9 

 
Figure 3: Machinery utilization using one shovel (baseline scenario). 
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4.3 Model Application: Determining the Fleet Size 

Using our DEVS simulation model, we can execute a variety of experiments with ease. This way, modelers 
can explore multiple scenarios to estimate the effects of different actions. As an illustrative application, we 
propose a brute-force way of determining the adequate fleet size for different ore transportation goals for a 
given 12-hour shift. 

Figure 3 and Figure 4 show machinery utilization levels for simulated scenarios with one and two 
shovels (respectively), considering three stockpiles and 5 to 20 trucks. It is clear that by increasing the 
number of shovels from 1 to 2, its utilization decreases since they distribute their attention to trucks. By 
simply using two shovels, their utilization decreases from 32% to 16% (with five trucks hauling material), 
and from 98% to 63% with 20 trucks operating. On the other hand, when using just one shovel (Figure 3) 
and increasing from 15 to 16 trucks, their utilization dramatically decreases as they spend more time 
queuing. 

 
Figure 4: Machinery utilization using two shovels. 

 
Figure 5: Simulated transported ore using two shovels and different number of trucks in a 12-hour shift. 

Following this and considering the chart of transported ore in Figure 5, dispatchers can forecast the 
amount of machinery (without overestimating it) needed to accomplish their goals of transported material. 
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For example, if the objective is to haul 33,000 tons, the number of trucks working during that shift must be 
15. In addition, shovels should be at least 2 for supporting fault tolerance, as they are a critical resource, 
and their failure would stop the whole material handling subprocess.  

5 CONCLUSIONS 

We have presented a DEVS model of the loading and transport subprocess of an open pit mine implemented 
in PyPDEVS. Using a formal modeling and simulation approach allows the modelers to focus on modeling 
aspects without worrying about the simulation's low-level complexities, which are handled by the tool.  

Furthermore, the model enables dispatch personnel to define new and fully parameterizable scenarios 
quickly and easily. Also, it is flexible enough to be extended with new truck assignment policies and to add 
new kinds of machinery. The resulting DEVS model has been used to simulate different scenarios for 
determining the fleet size given a material handling goal without overestimating the amount of equipment 
or, on the other hand, to forecast the amount of transported ore with a given fleet size. 

Despite the lack of actual (publicly available) data on the material handling subprocess of open pit 
mines, we validated our DEVS model using parameters in the literature, obtaining good precision. 

In future work, we intend to model time-changing open pit layouts (with extraction zones or deposits 
moving over time). Also, to consider realistic details that may affect overall hauling goals, such as 
planned/unplanned machinery maintenance for allowing to study the effects of unavailable equipment due 
to failures, operator-induced delays (due to biological needs), and different truck assignment strategies. 
Finally, we aim to test the simulator performance to evaluate a possible integration with actual real-time 
values from open-pit mines to produce a digital twin. 
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